RAIS Ltd. 58, Dimcho Debelianov Str. 4400 Pazardjik, Bulgaria Tel.:+359 34 444255, 445221 Fax:+359 34 443738 E-mail: <u>info@rais-bg.com</u>

РАИС ООД бул. Димчо Дебелянов 58 4400 Пазарджик тел.: 034 444255, 445221 факс: 034 443738 <u>http://www.rais-bg.com/</u>

РУКОВОДСТВО ОПЕРАТОРА

ВЕРТИКАЛЬНЫЙ ОБРАБАТЫВАЮЩИЙ ЦЕНТР M500, M550

ФАБРИЧНЫЙ НОМЕР: _____

СОДЕРЖАНИЕ

1.	ВВЕЛЕНИЕ	. 3				
2	ТЕХНИЧЕСКИЕ ДАННЫЕ О " RAIS- M500 "	.3				
3.	ОБШИЙ ВИД СТАНКА	. 4				
3.1.	Описание позиций	. 4				
3. 2.	Рабочий стол	. 5				
в) М	550	. 6				
3. 3.	Оправка инструмента	. 7				
4.	ХАРАКТЕРИСТИКА ГЛАВНОГО ДВИГАТЕЛЯ	.7				
5.	ТРАНСПОРТ	. 8				
6.	СОХРАНЕНИЕ	. 8				
7.	ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	. 9				
8.	ПОРЯДОК УСТАНОВКИ	10				
8.1.	ТРЕБОВАНИЕ К ЭЛЕКТРОПИТАНИЮ:	10				
8.2.	ТРЕБОВАНИЕ К ОКРУЖАЮЩЕЙ СРЕДЕ:	10				
8.3.	Поднятие и перемещение упаковочной машины	10				
8.4.	Распакование	11				
8.5.	Поднятие и перемещение распакованного станка	11				
8.	5.1. Разблокирование противовеса	11				
8.6.	Расконсервирование	11				
8.7.	Установка фундамента	12				
8.8.	ПЕРВОНАЧАЛЬНЫЙ ПУСК СТАНКА	13				
8.	8.1. Подготовка станка	13				
8.	8.2. Соединение к электрической сети	13				
8.	8.3. Пуск станка	13				
9.	РУКОВОДСТВО ПО ОБСЛУЖИВАНИЮ	14				
9.1.	Описание и принцип действия	14				
9.2.	Пульт управления станком	14				
9.	2.1 Описание кнопок	15				
9.3.	М-функции	21				
9.4	Таблица для инструментов в магазине.	22				
9.5.	Шпиндель	24				
9.6.	Система смазки	25				
9.7.	Система смазывающе-охлаждающей жидкости (СОЖ)	25				
9.8	Рекомендуемые смазки	26				
9.9	Как установить/снять поворотный стол	27				
10.	ИНСТРУКЦИЯ О ТЕХНИЧЕСКОЙ БЕЗОПАСНОСТИ ВО ВРЕМЯ РАБОТЫ НА СТАНКЕ "RAIS -	-				
M50	D". 29					
11.	ТРЕБОВАНИЯ К ПОДКЛЮЧЕНИЮ СТАНКА СЕТИ ПИТАНИЯ:	29				
12. (ОПИСАНИЕ И НАЧИНА НА ИЗПОЛЗВАНЕ НА МАКРОСИТЕ ЗА ТЕСТЕРИТЕ	31				
12.1	12.1 КАЛИБРОВАНЕ НА ТЕСТЕРИТЕ					
12.2	2.2 ОПИСАНИЕ НА G-КОДОВЕТЕ РАБОТЕЩИ С ТЕСТЕРИТЕ					
12.	УПАКОВОЧНЫЙ ЛИСТ	39				
13.	ПРОТОКОЛ ОБ ИСПЫТАНИИ	40				
14.	СВИДЕТЕЛЬСТВО О СОХРАНЕНИИ	45				
15.	СВИДЕТЕЛЬСТВО ОБ УПАКОВКЕ	46				
16.	КОМПЛЕКТ ПОСТАВКИ	46				

ПРИЛОЖЕНИЯ

к руководству по эксплуатации

Схема электрическая принципиальная Сборник ладдер диаграмм Все документы предоставлены производителем на диске.

1. ВВЕДЕНИЕ

Станки типа " RAIS- M500 " предназначены для выполнения большого диапазона фрезерных, сверлильных и растачивающих операций на деталях средних размеров в одиночном и небольшом серийном производстве.

Станок оборудован бесступенчатым главным приводом.

Как вариант станок может быть оборудован системой непосредственного измерения движений стола и 12 или 24-гнездовым инструментальным магазином.

2 Технические данные о " RAIS- M500 "

Показатели	Величина
Размеры рабочего стола	900x500 mm
Т-каналы	3 x 18 mm
Максимальный вес детали	550 kg
Расстояние от торца шпинделя до стола	125635 mm
Расстояние от оси шпинделя до колонны	531 mm
Максимальные ходы по осям, X, Y, Z	800x500x510 mm
Конус шпинделя	ISO/BT 40 (MASBT403)
Охват оборотов	808000
Главный двигатель (постоянно/30 минут)	7.5/11 kW
Электродвигатель насоса для СОЖ	0,18 кW
Быстрый ход по осям X, Y, Z	24, 24, 20
Рабочая подача по осям X, У и Z	8000 mm /min
CNC	FANUC 21i MB
Размеры	2500x2400x2300 mm
Bec	4500 kg

3. Общий вид станка

3.1. Описание позиций

На рис.1 показан общий вид станка. Позиции имеют следующее значение:

3. 2. Рабочий стол

На рис.2 показаны внешние и присоединительные размеры рабочего стола с расположением Т-образных каналов.

a) M500

b) M550

3. 3. Оправка инструмента

Шпиндель станка разработан для использования оправки по стандарту MAS BT 403. Хвостовик оправки должен отвечать чертежу, показанному ниже вправо. ISO40

ВНИМАНИЕ !

Использование инструмента с хвостовиком с размерами, различающимися от предписанных, может привести к поломке цанги или к плохому затягиванию инструмента!

4. Характеристика главного двигателя

MODEL α8/8000*i*

Главный двигатель станка - Fanuc Model α*i*8/8000. Мощность и моментная характеристика двигателя показана на верхнем чертеже. Шпиндель приводится в движение путем ременной передачи с приводным соотношением 1:1.

5. Транспорт

Для транспортировки станка следует использовать деревянные салазки (каретку), покрытыми брезентом и/или полиэтиленовой фольгой.

Поставив на салазки (каретку), станок следует укрепить согласно документации для упаковки, шпиндельную бабку надо подпереть на столе и в то же время укрепить противовес метальным прутом через колонну, снять сооружения для поднятия, совершить консервирование (сохранение).

6. Сохранение

Станок следует сохранять в закрытом помещении при следующих условиях:

- температура внутри помещения 10°C ÷ 35°C

- влажность воздуха - не более 75%

Станок следует хранить в консервированном состоянии, покрытой брезентом или другим непромокаемым материалом.

7. Гарантийные обязательства

Завод-производитель обязывается устранять неисправности по станке сроком в 12 месяцев, считая со дня завершения установки у клиента или сроком в 15 месяцев со дня транспортировки с завода-производителя, кроме случаев возникновения неисправностей из-за несоблюдения требований настоящего руководства, сопутствующего станок, как например:

- неправильная транспортировка или хранение;

- неправильная эксплуатация и настройка;

- неправильная установка со стороны клиента.

В гарантийный срок завод-производитель не несет ответственность в случае совершения попытки для устранения дефектов покупателем или другим неуполномоченным лицом.

Во время гарантийного срока, завод-производитель несет ответственность за сервис и связанные с ним расходы.

8. ПОРЯДОК УСТАНОВКИ

8.1. Требование к электропитанию:

- переменное напряжение	3x380V
- частота	50Hz
- установленная мощность машины	20 кW
- сечение кабеля питания	$3x10 \text{ mm}^2 + 1x6 \text{mm}^2$

8.2. Требование к окружающей среде:

Станок должен быть установлен в закрытом помещении.

Не допускается эксплуатация станка в условиях сильной запыленности воздуха (например в литейных цехах), повышенных вибраций, передаваемых через фундамент (например в кузнецких цехах), интенсивных тепловых излучениях (в близости к печам и др.).

- допустимая температура окружающей среды 10°C ÷ 35°C
- влажность воздуха не более 75%
- запыленность воздуха до 10мгр/ м³

8.3. Поднятие и перемещение упаковочной машины

На упаковке стандартными обозначениями указаны точные места для закрепления подъемных троссов.

8.4. Распакование

По поставке станка, надо сразу сделать проверку состояния упаковки.

Распакование совершается путем расковывания укрепляющих брусков и освобождения станка от связывающих и укрепляющих элементов.

После распакования проверить состояние станка и комплектовация поставки.

8.5. Поднятие и перемещение распакованного станка.

Распакованный и проверенный станок следует перемещать краном, причем один короткий трос, придерживающий противовес, охватывает прут через колонну(1), а другой, более длинный — вилки для поднятия (4), закрепленные на основе. Чтобы закрепить вилки, необходимо разъединить телескопическую защиту по оси Y со стороны стола и поставить ее максимально вперед (спереди).

Между троссами и частями станка, которые дотрагиваются, надо поставить прокладки из мягкого материала (сукна, деревянных брусков или др.) чтобы предостеречь окрашенные поверхности.

8.5.1. Разблокирование противовеса

При транспортировке противовес укреплен метальным прутом через колонну(1) и двумя укрепляющими болтами (2). После распакования станка и его установки на место необходимо сначала освободить укрепляющие болты (2) с двух сторон колонны, освободить деревянный брус под шпинделем путем поднятия головки на 5-10 мм по оси +Z в режиме Ручного Импульсного Генератора. После этого головку внимательно спустить вниз пока прут освободится и вытащить его из-за колонны.

8.6. Расконсервирование

Защитную антикоррозионную смазку надо устранить сначала деревянной лопаткой, а затем газойлем. Почищенные поверхности надо подсушить и смазать тонким слоем масла.

Не допускается устранение защитной смазки твердыми предметами и растворителями, которые могут повредить краску станка.

8.7. Установка фундамента

Станок следует установить на метальных плитах, укрепленных например дюбелями для бетона, подходящего размера, на пол помещения или как показано на чертеже внизу вправо. На них следует поставить металлические пяты нивелирующих болтов. Станок следует нивелировать с помощью нивелирующих болтов до 0.02/1000 в двух направлениях. Рекомендуется после нивеляции приварить металлические пяты к плитам (шов порядка 1-2 см хватит). Проверить снова нивеляцию после сварки пят. При установке метальных плит, обеспечьте общую денивеляцию всех плит в рамках 1.5 мм.

ВНИМАНИЕ !

Убедитесь, что станок не связан к сети питания прежде чем начать сваривание!

8.8. Первоначальный пуск станка

8.8.1. Подготовка станка

Станок расконсервировать указанным выше способом.

Налейте в бак насоса для смазки масло 150-220; БДС (болгарский государственный стандарт) 5291-83! Проверьте, чтобы не было утечек из маслопровода!

Налейте через цедилки в основе станка смазывающе-охлаждающую жидкость типа С-12; С-20, или другую смазывающе-охлаждающую жидкость. Не допускается использование водяных эмульсии с сильным коррозивным действием.

8.8.2. Соединение к электрической сети

Прежде чем соединить станок к питанию совершить заземление! Три фазы кабеля питания связываются к входящим зажимам главного выключателя QS0, а нулевой проводник - к зануляющей шине.

После включения главного выключателя проверить последовательность фаз питающего напряжения. На схеме указано как надо сделать это.

Если последовательность фаз соблюдена, индикатор поворачивается по направлению часовой стрелки. Можете проверить это и через насос для охлаждения – вращается ли он в правильном направлении.

Винты, которыми закреплены защитные провода к нулевой шине, надо хорошо притянуть. Кабели к этим проводам лучше закрепить и кернением, и спаиванием.

8.8.3. Пуск станка

- а) Включение питания
- Главный выключатель переключить в положение I (включено)
- Далее операции следует совершать кнопками на главном пульте.

9. РУКОВОДСТВО ПО ОБСЛУЖИВАНИЮ

9.1. Описание и принцип действия

"RAIS – M500" в принципе представляет собой бесконсольный фрезерный станок. Он создан из неподвижной основы, на которой установлены крестовидные салазки (каретка), движущиеся поперек, и стол, движущийся вдоль по крестовидным салазкам.

На основе установлена колонна. На ней установлена шпиндельная бабка. Шпиндель и главный двигатель установлены в шпиндельной бабке. Главный привод является бесступенчатым, зубноременным.

Смазывание направляющих и двигательных винтов станка осуществляется автоматически насосом, закрепленным сбоку.

9.2. Пульт управления станком

9.2.1 Описание кнопок

Замечание: надписи ниже с утолщенным шрифтом обозначают надписи на пульте

Emergency stop: Кнопка для аварийной остановки движения по осям и шпинделя. Кнопка остается в нажатом положении. Для освобождения поверните головку против часовой стрелки.

ВНИМАНИЕ !

Прежде чем выключить станок, убедитесь, что оси и шпиндель остановили свои движения, нажмите кнопку для аварийной остановки и только после этого выключите главный выключатель!

Кнопка для пуска электрошкафа и принудительного смазывания. После нажатия кнопки аварийной остановки этой кнопкой восстанавливается нормальная работа.

Кнопки для выхода из аварийного выключателя. При нажатом аварийном выключателе, выходит сбой "X(Y,Z) AXIS EMERGENCY LIMIT SWITCH ENGAGED" - задержите в нажатом положении обе кнопки, нажмите READY, и после изчезновения сбоя внимательно в ручном режиме выведите аварийного выключателя. ось вне зоны После этого освободите кнопки.

ВНИМАНИЕ !

Убедитесь, что вы двигаете станок в правильном направлении. В противном случае вы ударите ее о твердый упор! Не перемещать твердые упоры и конечные выключатели. Опасность механических повреждений.

Кнопки для выбора режима работы.

- **AUTO:** Выполнение программы в автоматическом режиме.
- **EDIT:** Редактирование программы.
- **MDI:** Ручной ввод данных. Введение одиночных команд и их выполнение.
- **DNC:** Выполнение программы, подаваемой внешним компьютером через
- серийный интерфейс или с карты памяти (PCMCII, PC-Card).
- НОМЕ: Поиск нулевой точки.
- **JOG**: Ручная работа.

MPGx1, Выбор режима работы ручным импульсным генератором. Выберите режим и инкремент с помощью этих кнопок и ось с помощью клавиш

MPGx10, MPGx100

PGx100 ±X, ±Y и ±Z. Загораются соответствующие лампочки выбранного

режима и инкремента.

Заметка: В случае, если станок оборудован передвижным ручным импульсным генератором, то выбор оси и инкремента осуществляется его переключателями.

Кнопка с лампочкой для освобождения инструмента. Работает только в ручном режиме (**JOG**). Чтобы освободить инструмент, придерживайте его одной рукой и нажмите кнопку дольше двух секунд. Цанга освобождает инструмент, лампочка на кнопке мигает. Чтобы поставить новый инструмент, сориентируйте его по отношению к шпонкам шпинделя, подайте осторожно вовнутрь до упора и освободите кнопку. Цанга захватывает инструмент и притягивает его вовнутрь, лампочка угасает.

ВНИМАНИЕ !

Убедитесь, что хвостовик у инструмента отвечает стандарту MAS403BT.

Убедитесь, что вы правильно поставили инструмент в шпиндель. Опасность механических повреждений цангового устройства.

 $\begin{array}{c} \bullet \\ \bullet \\ + C \end{array} \qquad \left[\begin{array}{c} \bullet \\ + Z \end{array} \right] \qquad \left[\begin{array}{c} \bullet \\ - Y \end{array} \right] \qquad \left[\begin{array}{c} \bullet \\ \bullet \\ + A \end{array} \right] \\ \left[\begin{array}{c} \bullet \\ \bullet \\ + Y \end{array} \right] \qquad \left[\begin{array}{c} \bullet \\ - X \end{array} \right] \qquad \left[\begin{array}{c} \bullet \\ \bullet \\ - X \end{array} \right] \\ \left[\begin{array}{c} \bullet \\ \bullet \\ - A \end{array} \right] \\ \left[\begin{array}{c} \bullet \\ \bullet \\ - A \end{array} \right] \\ \left[\begin{array}{c} \bullet \\ \bullet \\ - A \end{array} \right] \\ \left[\begin{array}{c} \bullet \\ \bullet \\ - A \end{array} \right] \\ \left[\begin{array}{c} \bullet \\ \bullet \\ - A \end{array} \right]$

Кнопки для ручного пуска/выключения охлаждения и выбора автоматического режима для него (управление M08, M09).

Кнопки для ручного движения осей и для отправки в опорную точку. Для движения осей вручную, выберите режим **JOG**, выберите подачу оверрейдом, и нажмите кнопку для движения в соответствующем направлении по данной оси. Отпустите кнопку для остановки движения. Нажатие кнопки для быстрого хода приводит к движению на быстром ходу с величиной, выбранной кнопками для выбора скорости на быстром ходу. Для отправки в опорную точку, сначала выдвините станок в режиме JOG в середину по ходу осей.

После этого выберите оверрейдом подачу не более100%, выберите режим **HOME**, выберите сначала ось Z и нажмите кнопку для направления плюс. Ось передвигается в направление + до нажатия на концевик, замедляет и останавливает. Продолжите с остальными осями.

В случае, если у Вашего станка система ЧПУ Fanuc series i, то датчики для обратной связи абсолютны, т.е. сразу после включения питания станок знает точную позицию. Нет необходимости искать опорную точку каждый раз после включения питания.

ВНИМАНИЕ !

Убедитесь, что инструмент или шпиндель не ударят деталь прежде чем послать станок в опорную точку.

Например: инструмент может быть внутри детали – последовательность искания опорных точек в этом случае критическая и должна быть выбрана правильно оператором. Опасность механических повреждений.

Кнопки для выбора скорости быстрого хода. F0 выбирает 400 мм/мин, остальные – соответствующий процент быстрого хода.

Кнопка **START**. Производит запуск программы в автоматическом или режиме **MDI** (ручной ввод данных).

Кнопка **PRG STOP**. Останавливает подачу и выполнение программы в автоматическом или режиме **MDI** (ручной ввод данных).

ВНИМАНИЕ: Шпиндель продолжает вращаться! Это с целью чтобы не сломать инструмент во время резания. Чтобы остановить вращение шпинделя нажмите кнопку STOP или SP STOP в ручных режимах!

Кнопка **STOP**. Останавливает безусловно выполнение программы, подачу и вращение шпинделя.

Кнопки для изменения направления вращения шпинделя в ручных режимах. Кнопка **SP STOP** останавливает вращение шпинделя в ручных режимах!

Включает/выключает освещение рабочей зоны.

РЪКОВОДСТВО М500

Выполнение программы по кадрам. Возможно переключение между AUTO и SINGLE BLOCK во время работы по программе. Не зависит от разрешающего переключателя.

Кнопка с ключом для разрешения редактирования программы, введения параметров, разрешения для кнопок **BDT, M01, RSTRT, MLK, DRN, *ABS.** 0 - разрешено, 1 – запрещено!

Запрещение выполнения команд, начинающих с "/"

Стоп по выбору. Только когда лампочка светится, станок останавливается при встрече команды М01. Для безусловного останова используйте М00

DRY RUN

Пробный ход для проверки программы. Рабочие подачи выбираются оверрейдом подачи независимо от введенных величин в программе.

Ручное абсолютное перемещение. (по выбору).

Для более подробного объяснения вышеуказанных функций, см. "FANUC series 0i-MB Operator's manual".

Оверрейд для скорости подачи в ручном режиме и процента рабочей подачи в автоматическом.

 $\begin{array}{c}
90 \\
90 \\
70 \\
70 \\
60 \\
50 \\
\overline{\%} \\
110 \\
120 \\
\overline{\%} \\
\overline{\%}$ \overline{\%} \\
\overline{\%} \\
\overline{\%} \\
\overline{\%} \\
\overline{\%} \\
\overline{\%} \\
\overline{\%}

Оверрейд шпинделя. Обратите внимание, что скорость шпинделя не может быть больше максимальной.

000000

(возможность, зависящая ОТ типа установленного магазина – может отсутствовать, напр. магазины с 12 инструментами имеют абсолютные датчики позиции) Nº1 Кнопка для поиска гнезда магазина С 24 инструментами. Если во время вращения магазина будет прервано электричество, то лампа кнопки начинает мигать. Выберите режим "НОМЕ" и нажмите кнопку. После нахождения первого гнезда лампа светится постоянно.

Эсли цикл «твердое резьборезание» прекращен нажатием кнопки «RESET» и метчик сломался внутри отверстия, переключите в режим "MDI" и задержите кнопку нажатой. Через 2 секунды шпиндель вытащит метчик, синхронизировав вращение и движение по оси Z по параметрам последнего цикла G84.

!. Не пробуйте резать одну и ту же резьбу дважды – начальная ориентация шпинделя не производится!

При активном М71 или М72 (включен един из двух измерительных сензоров) лампа мигает с тактом 1 секунда. В момент активирования сензора такт мигания будет 0.2 секунды.

9.3. М-функции

M00	Останавливает выполнение текущей программы. Нажатием кнопки "Start" Выполнение программы продолжается. Если ПК параметр К06.2=1, на 10 секунд пишит зуммер
M01	Условный стоп. Временно останавливает выполнение текучей программы, но только если светится лампа на кнопке "М01". Нажатием кнопки "Start" выполнение программы продолжается. Если ПК параметр К06.2=1, на 10 секунд пищит зуммер
M02	Конец программы. Если ПК параметр К06.2=1, на 10 секунд пищит зуммер
M03	Вращение шпинделя по часовой стрелке.
M04	Вращение шпинделя против часовой стрелки.
M05	Стоп шпинделя
M06	Вызывает макро-программу 9001 для смены инструмента. Обязательным условием до выполнения М06 является задать валидный Т-код. Даже если надо вернуть предпоследний инструмент в шпиндель, т.е. не было необходимости вращать магазин, то следует задать его снова.
M08	Включает охлаждение
M09	Выключает охлаждение
M13	=M03+M08. Включает охлаждение и вращения шпинделя по часовой стрелке.
M14	=M04+M08. Включает охлаждение и вращение шпинделя против часовой стрелки.
M19	Ориентация шпинделя
M20	Освобождает ориентацию шпинделя. Кнопкой "RESET" можно сделать то же самое.
M24	Зажим стола А (4-ая)
M25	Отжим стола А (4-ая)
M26	Зажим стола С (5-ая)
M27	Отжим стола С (5-ая)
M29	M29Sxxx; Такой кадр включает режим «твердое резьборезание» (нарезание резьбы без компенсирующего патрона). Спелующий кадр должен содержать
	G84. Отмена по G80.
M30	Конец программы. Если ПК параметр К06.2=1, на 10 секунд пищит зуммер
M46	Используется только в макро-программе для смены. Включает цикл для смены – [гнездо вниз*] – [рука на 60°] – [открывает цангу] – [рука на 180°] – [закрывает цангу] – [рука на -60] – [гнездо вверх*] * - см. внизу
M47	Изменяет способ выполнения инструментальной смены. После задания М47, следующее вращение магазина закончит командой "гнездо вниз". Также в конце смены инструмента не поднимется гнездо вверх. Задание последующего Т-кода сначала поднимает гнездо, крутит магазин и опять опускает гнездо. Функция эффективна и после выключения/включения станка. Отменяется с помощью М48 и М49
M48	Отменяет функцию М47, но не поднимает гнездо вверх в горизонтальном положении.
M49	Поднимает гнездо вверх в горизонтальном положении и выключает действие М47.
M70	Выключает оба сензора
M71	Включает сензор измерения инструмента
M72	Включает сензор измерения детали

9.4 Таблица для инструментов в магазине.

При оборудовании станка инструментальным магазином с автооператором (рукой) для смены инструмента, место инструментов в магазине не определено. При первоначальном заряжении магазина новым набором инструментов можете перезаписать таблицу для соответствия следующим способом: Выберите [System] -> [PMC] -> [PMCPRM] -> [Data] -> [C.DATA]

На экране показывается таблица с данными для магазина. D00 отвечает шпинделю, и там можете записать 25. D01 это первое гнездо, D02 второе и т.д.

D00	25	
D01	1	
D02	2	
D03	3	
D04	4	
D05	5	
D06	6	
D07	7	
D08	8	
D09	9	

D10	10
D11	11
D12	12
D13	13
D14	14
D15	15
D16	16
D17	17
D18	18
D19	19

20
21
22
23
24

Величина в соответствующей клетке указывает на номер инструмента. После смены, напр. Т6; М06; клетка D00 = 6, D06 = 25. После еще одной смены, напр. Т3; М6; клетка D00 = 3, D03 = 6, D06 = 25. Соотв., если опять вызвать Т6 то магазин позиционируется у гнезда №3 в этом случае, а не на №6.

Если во время вращения магазина прервется подача электропитания, счетчик гнезд в магазине возможно ошибиться и появится сбой 2107MAGAZINE POSITION UNDEFINED. В этом случае, после восстановления подачи элекричества, выберите в MDI произвольный инструмент заданием Txx, посмотрите на номер гнезда, на котором позиционирован магазин и введите его в [System] -> [PMC] -> [PMCPRM] -> [Counter] в последней колоне (CURRENT) на C06.

ВНИМАНИЕ !

Если станок оборудован горизонтальным магазином, не вставляйте инструмент в магазин напрямую. Если сделаете это можно получится так, что поставили инструмент в гнездо того, который в шпинделе, станок начнет делать смену, а гнездо уже занято Вами. Поэтому делайте смену инструментов так:

- 1. В MDI вызовите номер инструмента функцией Тхх.
- 2. Сделайте смену через М06.
- 3. В режиме «JOG» вручную замените инструмент в шпинделе и т.д.

Когда станок оборудован двумя 12-местными магазинами, рекомендуется чередовать места последовательных инструментов по программе в разных магазинах. Это снизит время смены. Напр. последовательно в программе могут пользоваться T01, T13, T02, T14, и т.д. В этом случае Txx подготовит новый инструмент в позиции смены, M06 заменит инструменты, не вращая магазины, а только движениями вперед-назад.

Параметры ПК Последовательность поиска: [SYSTEM] – [PLC] – [PLCPRM] – [KEEPRL]

Адрес	тип		описание
K0	BYTE		Интервал смазки, в минутах, задается числом от 16 (BIN 00010000) и выше. Если верхние 4 бита нули, записывается 32 (BIN 00100000)
K5.0	BIT	MAGZIN	1=есть магазин инстументов
K5.1	BIT	ORIENT	1= ориентация шпинделя на низкой скорости
K5.3	BIT	2NDSTP	1= используются вторые кнопки START и STOP
K5.5	BIT	DISAIR	1= сбой "нет давления въздуха" не останавливает исполнение
			программы
K5.6	BIT	ADDMOD	
K5.7	BIT	NODOOR	1= нет датчика открытия дверей
K6.0	BIT	EMPG	Внешнии РИГ
K6.1	BIT	ANYBEP	1= зуммер пищит при каждом нажатием кнопки на пульте
K6.2	BIT	EPBPEN	1= зуммер пищит 10 секунд после М00, М01, М02 и М30
K6.3	BIT	2MPG	2 шт. РИГ
K6.7	BIT	M08GUN	Пистолет для СОЖ
K7.0	BIT	SRNENB	1=Разрешает бутон "рестарт "
K7.1	BIT	ERSDOR	М02, М30 открывает дверь на 5 секунд
K7.2	BIT	OSPDOR	М00, М01 открывает дверь на 5 секунд
K7.3	BIT	SPLDOR	STL Лампа Старт закрывает дверь
K7.4	BIT	MAGNET	Замок двери с электромагнитом
K7.5	BIT	4TH-AX	есть дополнительная 4-тая ос
K7.6	BIT	CHIPEN	транспортер стружки
K8.0	BIT	ENGLSH	Язык операторских сообщении английский
K8.1	BIT	ITAL	Язык операторских сообщении италианский
K8.3	BIT	STL2EN	Зеленая лампа светится вместе с лампой старт
K8.4	BIT	ALMLEN	Красная лампа светится при сбое
K8.5	BIT	SP2LEN	Красная лампа светится вместе с лампой стоп
K8.6	BIT	ALMSEN	Красная лампа светится при операторских сообщении
K8.7	BIT	M02LEN	Красная лампа светится в конце на программы
K9.0	BIT	ZRN2BE	Режим "нулевая точка" выбирается двумя кнопками
K9.3	BIT	STL2BL	Зеленая лампа лампа мигает когда светится лампа старт
K9.4	BIT	ALMLBL	Красная лампа лампа мигает когда есть сбой
K9.5	BIT	SP2LBL	Красная лампа лампа мигает когда светится лампа стоп
K9.6	BIT	ALMSBL	Красная лампа лампа мигает при операторских сообщении
K9.7	BIT	M02LBL	Красная лампа лампа мигает при край на програмата
K10.0	BIT	POTMOD	Режим работы гнезда (см. М47-М48-М49)
K16.6	BIT	MWRTF	1 когда магазин вращается
K16.7	BIT	MWRTF2	1 если пропало питание во время вращения магазина

9.5. Шпиндель

Радиальное биение шпинделя точно проверено. Если во время работы возникнут отклонения, то сначала надо проверить инструмент. Плохое затачивание инструмента и его неправильное закрепление могут привести к отклонениям во время работы.

Закрепление инструмента к шпинделю совершается после первоначального ориентирования инструмента по отношению к ведущим шпонкам шпинделя и затягивания цанги.

ВНИМАНИЕ !

Существует опасность поранить руку в острых кромках инструмента!

9.6. Система смазки

Смазка направляющих и двигательных винтов (ШВП) осуществляется с помощью насоса, закрепленного на машине сбоку. Через дозаторы масло распределяется к направляющим и двигательным винтам.

9.7. Система смазывающе-охлаждающей жидкости (СОЖ)

Насос для смазывающе-охлаждающей жидкости установлен на отдельном баке. Жидкость отводится по гибким трубопроводам до струйников, закрепленных в нижней части шпиндельной бабки. Жидкость, собранная в защите рабочей зоны отводится обратно в бак.

9.8 Рекомендуемые смазки

DIN 51 502	CGLP 220	CLP 32	К2К-20 (конс. см.)
	(смазка направляющих и магазин-24 инстр.)	(Смазка на пневмо цилиндра цанги)	(смазка направляющих 12-гн. магазина)
Іоставчин	Вискозитет	Viscosity 32 mm ² /s	Walkpenetration
	220 mm²/s		NGLI-Klasse 2
ARAL	Aral Deganit B 220	Доливане месечно	Aral Aralub HL 2
BP	BP Maccurat 220 D	ARAL Vital DE 32	BP Energrease LS 2
	BP Energol HP-C 220		BP Langzeitfett
	BP Energol CHL 220		
Castrol	Castrol	BP Energol	Castrol
	Magnaglide D 220	HLP- HM 32	Spheerol AP 2
ELF	ELF MOGLIA 220	Hyspin AWS32	ELF ROLEXA 2
	ELF MOGLIA HXE 220	Hydraulikoil HDLP 32 SF	ELF MULTI
Esso	FEBIS K 220	ELF POLYTELIS 32	BEACON 2
			EXXON-
			MEHRZWECKFETT
FUCHS	RENEP 220 K	TERESSO 32	RENOLIT FWA 160
	RENEP 5 VG 220		RENOLIT MP
Q8	Q8 Vagner 220	RENOLIN HL 32	Q8 Rembrandt 2
			Q8 Rembrandt EP2
PETROFER	WAYLUBRIC VG 220	Q8 Holst 32	GREASE U
KLOBER	LAMORA SUPER	ISOLUBRIC VG 32	CENTOPLEX 2
Lubrication	POLADD 220		
MOBIL	Mobil Vactra Oil No4		Mobilux 2
Shell	Shell Tonna Öl T 220	MOBIL DTE Oil Light	Shell Alvania Fett R 2
	Shell Tonna Öl TX 220		Shell Alvania Fett G 2
DEA	Novan CGLp 220	Tellus oil 32	Glissando 20
Zet-Ge	Zet-Ge GWA T 12 EP	Astron HL32	Zet-Ge Fett M 51
	ISO 220		
Zet-Ge	Zet-Ge GWA T 12 EP	ACER 32	
	ISO 220		
Приста	МНП 100-220	МХЛ 32	
Лубрика	MHM 100-220	МХЛ 32	

9.9 Как установить/снять поворотный стол

Когато надо снять поворотный стол, сделайте следующее:

Запишите 1 в параметр 12 бит 7 для соотв. оси – этим выключаем ту ось от контура слежения:

	RMV							
012	7	6	5	4	3	2	1	0
Х	0							
Y	0							
Z	0							
A	1							
С	1							

Запишите 0 в параметр 1815 бит 5 – этим указываем что нет абсолютных датчиков обратной связи по тем осям.

			APC	APZ				
1815	7	6	5	4	3	2	1	0
Х			1	1				
Y			1	1				
Z			1	1				
A			0					
С			0					

Не меняйте остальных параметров.

Появится сбой №000 – выключите питание, выключите СЧПУ, потом и станок от главного выключателя, снимите все разъемы со стола, вкл. для воздуха. Снимите стол.

Включите снова станок. Если появится снова сбой №000, выключите и включите СЧПУ.

Процедура окончена. Автоматично восстанавливаются ограничения хода как для 3-осного станка – ограничения хода от параметров 1320, 1321.

Монтаж стола.

Выключите СЧПУ и станок от главного выключателя. Установите стол. Установите все разъемы стола, вкл. для воздуха.

Включите станок. Запишите 0 в параметры 12.7 для поворотных осей. Запишите 1 в параметры 1815 bit 5 для поворотных осей А и С.

Появится сбой №000 – выключите и включите СЧПУ.

Сейчас активны ограничения перемещения как для станок с дополнительными осями–ограничения хода от параметров 1326, 1327. Стоит сбой 300-APZ - не найдена нулевая точка по осям 4 и 5.

Выберите режим НОМЕ, найдите сначала нулевую точку магазина.

Выберите режим JOG. Установите ось Z так, чтобы не мешала вращению стола, потом подвиньте 4-ю и 5-ю ось по примерно 10-15 градусов каждая в направление плюс. Если по A это нельзя, сначала дайте в минус, потом 10-15 градусов в плюс

Выберите режим HOME, идите в ноль по осям 4 и 5. Если появится сбой №090, нажмите RESET, потом повторите процедуру насчет 10-15 градусов в направление плюс, выключите/включите СЧПУ. Если нету сбоя 90, RESET чистит сбой 300-APZ и станок готов к работе.

10. Инструкция о технической безопасности во время работы на станке "RAIS – M500".

Станок "RAIS – М500" изготовлен согласно требованиям БДС (болгарского государственного стандарта) 10705 - 73 "Машины и сооружения. Техника безопасности. Гигиена труда и эргономия. Общие требования; БДС12.2.003 - 78 "Охрана труда. Производственное оборудование. Общие требования по безопасности. " Требования СЭВ 538 - 77 "Техника безопасности. Металорежущие машины. Общие требования к конструкциям"; БДС 8355 -83 "электрооборудование обрабатывающих и перерабатывающих машин".

Во время работы со станком надо соблюдать следующие требования:

- 1. На станке могут работать только лица, ознакомившиеся с настоящим руководством.
- 2. До пуска главного электродвигателя проверить закрепление инструмента в шпинделе.
- 3. Во время работы на станке не открывать двери рабочей зоны без крайней необходимости.
- 4. Ремонты по станку должны совершаться только компетентными лицами.
- 5. Не совершать ремонтов по станку, если не выключено питающее напряжение.
- 6. Во время работы использовать только стандартные инструменты оразмерованные для максимальных оборотов станка "RAIS M500" 8000 об./ мин.

11. Требования к подключению станка сети питания:

- 1. Проверить отвечают ли электрические данные станка электрическим данным сети питания.
- Станок должен быть надежно заземлен. Его заземление должно быть выполнено в полном соответствии с требованиями и действующими для соответного государства правилами техники безопасности электрической инсталяции – ниское напряжение.
- Кабель питания должен иметь достаточное сечение, хорошо изолирован и поставлен в металлическую трубу в участке непосредственно у машины, во избежание опасности короткого замыкания и несчастных случаев. Кабель питания подсоединяется к ведущим клеммам на электрическом щите.

После соблюдения вышеуказанных условий концы трех проводников кабеля питания подсоединить к входящим клеммам L1; L2; L3; а заземляющий проводник к специально подготовленной для этой цели шины.

- 4. Не открывать электрический щит во время работы машиной.
- Смену перегоревшего предохранителя должен совершать только правоспособный электротехник.
- 6. При констатировании неполадков в электропитании поискать помощь электротехника.
- 7. Осмотры и ремонт электроинсталяции совершать только лицами, категорично определенными руководством предприятия.
- 8. Не ставить острых предметов вокруг места входа подключения к сети питания, потому что существует опасность повредить кабель в участке между концом металлической трубы и входящего шнура.
- 9. Беречь электрический щит от проникновения воды/дождя в нем.

- 10. Беречь заземляющий проводник от прерывания и периодически совершать осмотр его исправности.
- 11. При эксплуатации машины не допускать повышения напряжения сети питания более чем на 10 % номинального.

Станок "RAIS – M500" соответствует требованиям БДС 12.1.012 - 80 "Охрана труда. Вибрации. Общие требования по безопасности труда" ;БДС 14478 - 82 "Шум. Допустимые уровни на рабочих местах. Общие требования для проведения измерений".

12. Описание и начина на използване на макросите за тестерите.

ВНИМАНИЕ !

Преди да използвате тестерите моля запознайте се подробно с по долу направеното описание. По този начин ще предотвратите евентуални грешки при работата, както и счупването им.

Измервателните датчици монтирани на машината са коректно тарирани и проверени от завода производител. В случай, че свалите опипвача на тестера, завъртите на 180° положението му в магазина или при фиксиран шпиндел то той няма да измерва коректно. Ето защо Ви препоръчваме да не правите по горе описаното. Ако все пак решите да го свалите от машината то това да става по следния начин:

• В режим MDI напишете следната програма:

T25 M06

- Натиснете бутона START и изчакайте тестера да се постави в шпиндела.
- Надлежно отбележете разположението му спрямо шпиндела.
- Натиснете бутона ЈОС и след това хващайки с едната ръка тестера с другата натиснете зеления бутон на магазина за да го освободете от шпиндела.

При връщането му обратно повторете процедурата отново, като пропуснете точка 3 и ако в шпиндела има инструмент го свалете и на негово място поставете тестера така както сте отбелязали.

Запомнете, че той винаги трябва да бъде поставен под номер 25 в машината.

Същото се отнася и за монтирания на масата датчик за дължина и радиус на инструмента, ако бъде свален при връщането му той трябва да бъде отново тариран.

12.1 Калиброване на тестерите.

1. На тестера в шпиндела:

Преди калиброване следващите изисквания трябва да бъдат изпълнени:

- ⇒ Отворете програма О8000.
- ⇒ Калибриращата гривна трябва да бъде поставена на масата и фиксирана така, че тестера да не може да я премести при докосването й, а и да не се удари в притискащите планки.
- ⇒ Установете точните координати на калиброващата гривна по осите Х и Ү, а също и разстоянието по Z от челото на шпиндела до челото на калибриращата гривна

⇒ Измерете приблизително дължината на тестера и я въведете в компенсациите за дължина с номер 25.

ВНИМАНИЕ !

След калибриране на тестера никога не използвайте и не променяйте стойността в корекционен регистър номер 25. Ако по някакъв начин направите това то ще доведе до грешни резултати или удрянето му. Ако имате и най-малкото съмнение за това направете пак калибриращата процедура.

При отваряне на програмата тя трябва да изглежда по следния начин.

O8000(CAL.SPINDLE PROBE) T25 M6 #505=6. #504=25. #513=2. #520=1000. #521=250. G0G91G28Z0 G10G90L2P0X0Y0Z0 G10G90L20P47X-638.082Y-340.014Z-668.738 G110X29.Y0D5.T49.999A2. G0G91G28Z0 M02

Описание на програмата

програма	Обяснение на стъпките от програмата
%	
:8000	Номер на програмата
T25	Извикване на тестера
M06	Поставяне на тестера в шпиндела
#505 = 6.	Указване, че типа на ЦПУ-то е FANUC 0
#504 = 25 .	Указване на номера на корекцията на тестера
#513 = 2.	Специфициране на типа на използваните батерии
#520 = 1000 .	Установяване на позиционната скорост на движение на тестера в мм/мин.
#521 = 250.	Установяване на скороста на движение на тестера при докосване в мм/мин. Скороста е препоръчана от производителя и не я променяите.
G0 G91 G28 Z0	Отиване в опорна точка по Z.
G10G90L2P0X0Y0Z0	Нулиране на отмествания на координатната система
G10G90L20P47X- 638.082Y-340.014Z- 668.738	Установяване на координатна система номер 54-47 със стоиностите, които сте имерели за центъра на калибриращата гривна за всяка една от осите.

6	G110	Извикване на калиброващата програма
5.T49.9	X25.	Инкрементално зададено растоянието по ос X от центара на гривната .до точката, където тестера ще докосне челото по ос Z
9. Y0D 99A2.	YO	Инкрементално зададено растоянието по ос Y от центара на гривната .до точката, където тестера ще докосне челото по ос 7.
Š,	D5.	 Специфицирайте диаметъра на опипвача
9	T49.999	Точния диаметър на калиброващата гривна
5	A2.	Указване на типа на корекциите на ЦПУ-то. Това винаги трябва да бъде 2.
G0 G91 G28 Z0		Отиване в опорна точка по Z.
M02		Край на калиброващата програма.
%		

Забележки

- > След калибриране не променяйте стойностите на променливите от #500 до #521.
- > След промяна на опипвача с друг, Вие трябва да направите калибриране отново.

За проверка на резултатите

Компенсационните фактори и другите установъчни параметри са изброени в следващите променливи:

променливи	Съдържание на променливите
#500	Стойност на калибровката в +Х
# 501	Стойност на калибровката в -Х
# 502	Стойност на калибровката в +Ү
# 503	Стойност на калибровката в -Ү
# 504	Номер на корекцията на тестера

2. На тестера върху масата:

Преди калиброване следващите изисквания трябва да бъдат направени

- ⇒ Отворете програма О8500.
- ⇒ Калиброващия инструмент да бъде поставен под номер 1.
- ⇒ Установете точните координати на центъра на опипвача по осите X и Y, а също и точната дължина на калиброващия инструмент.
- ⇒ Измерете приблизително разстоянието от челото на шпиндела до челото на опипвача на тестера. Грешката при това измерване да е в рамките на ±10 мм.

При отваряне на програмата тя трябва да изглежда по следния начин.

O8500(CAL.TABLE PROBE)

T1 M6 #528=-49.68 #529=-430.04 #526=120.318 #522=576. G140F1.D10. M30

Описание на програмата

програм	иа	Обяснение на стъпките от програмата	
%			
:8500		Номер на програмата.	
T1		Извикване на калибровашия инструмент.	
M06		Поставяне на инструмента в шпиндела.	
#528=-49.68		Координата на центъра на опипвача по ос Х.	
#529=-430.04		Координата на центъра на опипвача по ос Ү.	
#526=120.318		Точната дължина на калибриращия инструмент.	
#522=576.		Приблизителното разтояние от шпиндела до опипвача.	
	G140	Извикване на макрото за корекция и диаметър.	
G140F1.D10.	F1.	Указване режим за калиброване.	
	D10.	Точния диаметър на калиброващия инструмент.	
M30		Край на калиброващата програма.	
%			

Забележки

- След калибриране не променяйте стойностите на променливите #522, #528 и #529.
- След всяко сваляне или преместване на тестера, Вие трябва да направите калиброване отново.

12.2 Описание на G-кодовете работещи с тестерите.

1.G100 – позициониране на тестера в точка със следене за докосване на тестера.

Форматът на функцията е следния: G100 X___ Y___ Z___ F__.

Където:

X,Y и Z са координатите на точката на позициониране. F е скоростта на позициониране в мм/мин.

2. G150 – отиграване на корекцията по дължина на тестера.

С тази команда се активира корекцията по дължината на тестера.

ВНИМАНИЕ !

Тази команда трябва винаги да бъде първа след вкарване на тестера в шпиндела. В противен случай изпълнението на който и да е друг G-код за движение на тестера може да доведе до удрянето му.

3. G120 – намиране на средата на диаметър или между две повърхнини.

Форматът на функцията е следния: G120 X_._ Y_._ R_._ Z_._T_. W_._ F_. A_. D_. E_._ S_

Където:

Х и Y са приблизителните абсолютни координатите спрямо текущата координатна система на .центъра. Изисква се винаги при стартиране на командата.

Х и Y са приблизителните абсолютни координатите спрямо текущата координатна система на .центъра. Изисква се винаги при стартиране на командата.

R е абсолютната координата по Z от която започва и завършва измерването така че опипвача на тестера да не с докосне каквото и да е. Изисква се винаги при стартиране на командата.

Z е абсолютната координата по Z, на която опипвача ще извърши имерванията по другите оси. Изисква се винаги при стартиране на командата.

Т е номера на корекцията на радиуса на инструмента, която ще бъде променена след имерване. Не се изисква се винаги при стартиране на командата.

W – толеранс на измерваната величина, при което ако тя е по-голяма с толкова или по-малка с толкова ще се генирира грешка.

F определя типа на G-функцията. Значението му е описано в таблицата по долу.

Адрес	Действия на G120
F1.	Установява текущата коорд. система с намерения център на детайла.
F2.	Измерване на размера и изчисляване на коорд. на центъра без печат.
F3.	Измерване на размера и изчисляване на коорд. на центъра с печат.

Когато се използва F2. и F3. резултатите от действието се запомнят в следните променливи:

ПРОМЕНЛИВИ	ДАННИ
#506	Координата по Х на центъра.
#507	Координата по Ү на центъра.
#508	Измерения диаметър или дължина по ос Х.
#509	Измерения диаметър или дължина по ос Ү.

Тези променливи не се променят до следващото изпълнение на G120.

А - избиране ос за измерване.

ПРОМЕНЛИВИ	ДАННИ
A1	Измерване и записване само в Х координатата
A2	Измерване и записване само в Ү координатата
A3	Измерване и записване и в двете координати

S – вътрешно/външно измерване на отвори или валове

Адрес	Действия на G120
S1.	Външно измерване
S2.	Вътрешно измерване - Z остава с програмираната стойност и пробника
	винаги се връща в центъра на Х/Ү
S3.	Вътрешно измерване - Z коорд. се завръща в позиция R след всяка
	докосната точка и тогава се предвижва към следващата Х/Ү позиция
	преди да се премести на долу

Приблизителен диаметър/ширина на измервания детайл П

айл Изисква се

Е Грешка на разположението на детайла. Препоръчителна Изисква се минимална стойност = 3.0ММ или 0.12"

ЕДИНИЧНА ПОВЪРХНОСТ

G130 X_._Y_._R_._Z_._T_.W_._F_.A_.D_.E_._S_

G130 се използва за измерване на единична повърхнина по X, Y, или Z оста.

Х	приблизителна безопасна абсолютна позиция по Х или позиция	Изисква се
	от която да почне измерването по Z	

Y	приблизителна безопасна абсолютна позиция по Ү или позиция	Изисква се
	от която да почне измерването по Z	

R	приблизителна безопасна абсолютна позиция по Z в която да	Изисква се
	започне/завърши измерването	

Ζ	абсолютна позиция по Z на която ще докосва по X и/или Y. Ако	Изисква се
	ще се проверява по Z, то Z определя приблизителната позиция	
	на равнината.	

V	Стойност на размер/повърхност която очаквате да намерите	He e
	в тая позиция	задължителна

W	Толеранс на очакваната стойност спрямо "V" преди да се	He e
	генерира аларма	задължителна

Т	Номер на корекцията по радиус	Не е задължителна
S	като G120 : S1. = външно / S2. = вътрешно	Не е задължителна

F Желаната функция

Изисква се

Адрес	Действия на G130
F1.	Установява текущата коор. систама с намерената повърхност на детайла.
F2.	Измерване на размера и изчисляване на повърхността без принтване.
F3.	Измерване на размера и изчисляване на повърхността с принтване.

Когато се използва F2. и F3. резултатите от действието се запомнят в #510

Тези променливи не се променят до следващото изпълнение на G130.

А – какво ще е измерването.

ПРОМЕНЛИВИ	ДАННИ
A1	Измерване и записване само в Х координатата
A2	Измерване и записване само в Ү координатата
A3	Измерване и записване и в двете координати

D - инкрементално разстояние до пресметнатото положение на повърхнината. Тази стоиност трябва да бъде въведена и не може да бъде нула(0)

Е - грешка която може да бъде допусната. Препоръчителна минимална величина 3 мм

Измерване на инструмента

G140 F_.T_.E._D._H_.R_.I_.U_.X_._Y_._Z_._

F - F определя типа на G-функцията. Значението му е описано в таблицата по долу.

Адрес Действия на G140	
F1.	Калибриране на дължина и радиус
F1.1	Калибриране на дължина
F2.	Измерване дължината на инструмента
F3.	Измерване радиуса на инструмента
F4.	Измерване дължината и радиуса на инструмента
F5.	Проверка за счупен инструмент
F6.	Измерване дължина и диаметър с въртене на инструмента

7	Приблизителна дължина на инструмента	Изисква се
---	--------------------------------------	------------

E	Грешка над която се приема че инструмента е счупен/износен – само за F5. Трябва да е положително цяло число. При F1. или F3. не е необходима	Изисква се
---	--	------------

D	Очакван диаметър. Трябва да е положително цяло число.	Изисква се
	При F2. или F5. не е необходима	

Н	Тип на режещия инструмент 1 = лесен (нормален)	Изисква се
	2. = ляв	

R	Начин на измерване на радиуса	Не е задължителна
1	1 = запиши намерения радиус	По подразбиране =2
	2 = запиши разликата между намерения радиус и	
	очаквания радиус (D)	

Ι	Инкрементално разстояние от върха на инструмента на което ше се измерва радиуса. Трябва да е положително число. При F1. / F2. / F5. не е необходима	Изисква се
U	Номер на корекцията в която да се запише измерения радиус	Изисква се

При F1. / F2. / F5. не е необходима

	Х	Инкрементално разстояние по X оста за отместване на инструмента от центъра на пробника до режещия ръб който	Не е задължителна
ще измерваме		ще измерваме	

Υ	Инкрементално разстояние по У оста за отместване на	He e
•	инструмента от центъра на пробника до режещия ръб който	задължителна
	ще измерваме	

G170 F_. U_. X_._ Y_._ Z_._

Този цикъл се използва за автоматично преместване на една координатна система в друга

F Оригинална/първа коорд. с-ма която ще се ползва за пресмятане на изместването. Ако трябва само да се промени само тя, то "F" и "U" трябва да са еднакви. За G54-G59, въведи F54 до F59. За G54.1P1- G54.1P48, въведи F1 до F48.
--

U	Коорд. с-ма която ще се промени. За G54-G59, въведи U54 до U59. За G54.1P1-G54.1P48, въведи	Трябва да е 54. до 59. или 1. до 48.
	U1 до U48.	

`	/
	Υ.
	•

Желано отместване по "Х" Не е задължителна

\ /	
Υ	

Желано отместване по "Y" Не е задължителна

7

Желано отместване по "Z Не е задължителна

12. УПАКОВОЧНЫЙ ЛИСТ

Наименование упаковки:

Вертикальный обрабатывающий центр

M500

Заводской номер(а):	6-140			
Год производства:	2006			
Ордер No.:	6-140	Вес нетто:	4500	
Упакована в:	Каретке	Вес брутто:	4900	
Размеры упаковки:	2800/2400/2	450		

СОДЕРЖАНИЕ УПАКОВКИ

(для одной машины)

Ν	Наименование	Кол.
1	Станок M500 фабр. №6-140/Fanuc 21i Model B	1
2	Руководство по эксплуатации, вкл.	1
	Протокол об испытании	1
	Свидетельство о качестве	1
3	Руководство оператора (системы ЧПУ), на CD	1

назарджик,(дата

Контролер:..... Упакована:....

Управитель:....

13. Протокол об испытании

Подготовка станка

Нивелирование 0,030/500 мм

заземление

Общие проверки - качество выполнения и покраски:

Выполнено хорошо

Выполнено плохо

Дополнительные заметки:....

Проверки основных технических характеристик:

Ν	Наименование	Мярка	Зададено	Измеренс	Забележка
1.	Расстояние от торца шпинделя				
	до рабочей поверхности стола				
	Минимальное	ММ	125		
	Максимальное	ММ	635		
2.	Расстояние от оси шпинделя до	ММ	531		
	вертикальных направляющих				
3.	Максимальные ходы по:				
	Х	ММ	800		
	Υ	ММ	500		
	Z	ММ	510		
4.	Оборотный охват	мин ⁻¹	80 ÷ 8000		

ПРОТОКОЛ ИСПЫТАНИЯ ВЕРТИКАЛЬНОГО ОБРАБАТЫВАЮЩЕГО ЦЕНТРА M500 НА ГЕОМЕТРИЧЕСКУЮ ТОЧНОСТЬ

Ν	Наименование проверки	Отклонение		
		Допустимо	Измерено	Измере
			произ-	НО
			зодителен	том
1	Радиальное биение внутреннего конуса			
	ипинлеля			
		0.007		
		0,007		
2				
2	Отклонение от перпендикулярности движения	0.00/200		
	шпинделя по отношению рабочего стола в	0,02/300		
	продольнои и поперечнои равнине			

Ν	Наименование проверки	0	тклонение
3	Отклонение от равнинности рабочей поверхности		
	стола	0,025/300	
	$A = \begin{bmatrix} B \\ B$		
4	Отклонение от перпендикулярности колонны к		
	рабочей поверхности стола		
	а/ лобовое	0,025/300	
	б/ боковое	0,025/300	

Ν	Наименование проверки	0	тклонение
5	Отклонение от параллельности рабочей		
	поверхности стола к ее продольному	0,025	
	перемещению (ось Х)		
6	Отклонение от параллельности рабочей		
	поверхности стола к ее поперечному	0,025	
	перемещению (ось Ү)		
	中 ()		
<u> </u>			
7	перемещения стола к ее поперечному		
	перемещению	0.00/000	
		0,02/300	
	$ \longrightarrow $		
		1	1 1

Ν	Наименование проверки	Отклонение		
8	Точность позиционирования			
	по оси Х	0,02		
	по оси Ү	0,02		
	по оси Z	0,02		

Дата: _____

Контролер: _____(фамилия, подпись)

14. Свидетельство о сохранении

/Наименование изделия/	Заводской номер /обозначение/
подверженный	консервации
согласно требованиям, указанным в руково	дстве об эксплуатации.
Дата консервирования	
Срок консервирования Выполнил консервирование	 /подпись / /печать/
Принял изделие после консервирования	/ подпись/
Примечание: Свидетельство пополн	яется предприятием - производителем

15. Свидетельство об упаковке

. /Наименование изделия/ Заводской номер...... /обозначение/

упаковано и консервированно согласно требованиям, указанным в документации.

Дата упакования Выполнивший упакование............../подпись / /печать/ Принял изделие после упакования/подпись/ Примечание: Свидетельство пополняется предприятием - производителем упаковки изделия

16. Комплект поставки

Машина

типа	Заводской номер
Охват оборотов CNC Измерительная система по осям	

ГАРАНТИЙНАЯ КАРТА

Модель машины	
Фабричный номер	
Год призводства	
Заказ N	

Отправка:	Заводской контролер:
Дата	Фамилия
	Подпись

Дата выполнения	Представитель	Представитель
установки	завода-производителя:	клиента:
	Фамилия	Фамилия
	Полпись	Полпись
	Подплов	Подплов